SOAL KONTEKSTUAL BERKAITAN PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU, SUDUT ELEVASI DAN SUDUT DEPRESI

Nama : Qezhia Gracia Audrey Sony

Kelas : X MIPA 1


SOAL KONTEKSTUAL BERKAITAN PERBANDINGAN TRIGONOMETRI PADA SEGITIGA SIKU-SIKU, SUDUT ELEVASI DAN SUDUT DEPRESI

1. Perhatikan gambar persegi panjang PQRS di bawah ini.


Diketahui panjang diagonal PR = 20 cm dan ∠RPS = 60°. Tentukan
a) panjang PS;
b) panjang PQ;
c) luas PQRS;
d) keliling PQRS.

Penyelesaian:
a) panjang PS dapat dicari dengan perbandingan segitiga siku-siku sudut khusus (30° dan 60°), yakni:
sisi pendek : sisi panjang = 1 : 2
PS : PR = 1 : 2
PS : 20 cm = 1 : 2
PS = ½ x 20 cm
PS = 10 cm

b) panjang PQ juga dapat dicari dengan perbandingan segitiga siku-siku sudut khusus (30° dan 60°), yakni:
sisi tengah : sisi panjang = √3 : 2
PQ : PR = √3 : 2
PQ : 20 cm = √3 : 2
PQ = (√3/2) x 20 cm
PQ = 10√3 cm

c) luas PQRS dapat dicari dengan menggunakan rumus luas persegi panjang yakni:
L = p x l
L = PS x PQ
L = 10 cm x 10√3 cm
L = 100√3 cm2

d) keliling PQRS dapat dicari dengan rumus keliling persegi panjang yakni:
K = 2(p + l)
K = 2(PS + PQ)
K = 2(10 cm + 10√3 cm)
K = 20(1 + √3) cm


2. Sekarang perhatikan gambar di bawah ini.

Segitiga ABC pada gambar di atas adalah segitiga siku-siku sama kaki, dengan sudut siku-siku di titik B. Di mana panjang AB = BC = 2x cm, ∠ ABC = 90° dan ∠BAC = ∠ACB = 45°.

Dengan menggunakan teorema Pythagoras maka panjang AC diperoleh:
AC = √(AB2 + BC2)
AC = √((2x)2 + (2x)2)
AC = √(4x2 + 4x2)
AC = √8x2
AC = 2x√2 cm

Berdasarkan hasil di atas maka diperoleh perbandingan segitiga siku-siku pada sudut 45° yakni:
AB : BC : AC = 2x : 2x : 2x√2
AB : BC : AC = 1 : 1 : √2

3. Perhatikan gambar persegi ABCD di bawah ini.

Diketahui panjang diagonal AC = 10 cm dan ∠BAC = 45°. Tentukan
a) panjang AB;
b) luas ABCD;
c) keliling ABCD.

Penyelesaian:
a) panjang AB dapat dicari dengan perbandingan segitiga siku-siku sudut khusus (45°), yakni:
AB : AC = 1 : √2
AB : 10 cm = 1 : √2
AB = (1/√2) x 10 cm
AB = (10/√2) cm
AB = 5√2 cm

b) luas ABCD dapat dicari dengan menggunakan rumus luas persegi yakni:
L = s2
L = AB2
L = (5√2 cm)2
L = 50 cm2

e) keliling PQRS dapat dicari dengan rumus keliling persegi yakni:
K = 4s
K = 4AB
K = 4 . 5√2 cm
K = 20√2 cm


4. Budi melihat puncak menara dengan sudut elevasi 30°. Jika jarak antara Budi dan menara yang dilihatnya adalah 150 m dan tinggi Budi adalah 120 cm maka tinggi menara tersebut adalah …

Jawab

tan 30⁰ =



x = . 150

x = 50√3

Jadi tinggi menara adalah

= x + tinggi Budi

= 50√3 m + 120 cm

= 50√3 m + 1,2 m

= (50√3 + 1,2) m


5. Andi berdiri tegak pada jarak 10√3 m dari kaki sebuah pohon besar yang tumbuh gerak lurus. Jika tinggi Andi 1,6 m dan melihat ke puncak pohon dengan sudut elevasi 60°. Tentukan tinggi pohon tersebut?

Jawab

tan 60⁰ =



x = √3 . 10√3

x = 30

Jadi tinggi pohon adalah

= x + tinggi Andi

= 30 m + 1,6 m

= 31,6 m


6. Sebuah gedung yang tingginya 50 m dan terdapat sebuah batu besar di dekat gedung. Jika sudut depresi dari titik puncak gedung terhadap batu tersebut adalah 30⁰ maka jarak batu terhadap dasar gedung tersebut adalah …

Jawab


tan 30⁰ =



x = 50√3

Jadi jarak batu terhadap dasar gedung tersebut adalah 50√3 m


7. Iwan memandang puncak sebuah gedung dengan sudut elevasi 60⁰. Tinggi orang Iwan 1,7 m dan jarak Iwan dengan gedung 40√3 m. Tinggi gedung adalah ….

Jawab

tan 60⁰ =



x = √3 . 40√3

x = 120

Jadi tinggi gedung adalah

= x + tinggi Iwan

= 120 m + 1,7 m

= 121,7 m


8. Seorang siswa diberikan tugas untuk mengukur tinggi sebuah gedung dengan menggunakan klinometer pada awal berdiri melihat ujung atas gedung dengan sudut elevasi 30° kemudian mendekati gedung sejauh 20 m dengan sudut elevasi 45°, jika tinggi siswa tersebut 1,5 m maka tinggi gedung adalah …

Jawab

Untuk sudut 45°

tan 45⁰ =

1 =

y = x

Untuk sudut 30°

tan 30⁰ =



√3 x = 20 + x

√3 x – x = 20

x(√3 – 1) = 20

x =

x =

x =

x =

x = 10(√3 + 1)

x = 10√3 + 10

Jadi tinggi gedung tersebut adalah

= x + tinggi siswa

= (10√3 + 10 + 1,5) m

= (10√3 + 11,5) m


9. Seorang anak dengan tinggi 160 cm berdiri pada jarak 12 m dari kaki tiang bendera. Jika sudut depresi dari puncak tiang terhadap anak adalah 45° maka tinggi tiang bendera itu adalah …

Jawab

tan 45⁰ =

1 =

x = 12

Jadi tinggi tiang bendera adalah

= x + tinggi anak

= 12 m + 160 cm

= 12 m + 1,6 m

= 13,6 m


10. Joko yang berjarak 12 m melihat puncak sebuah gedung dengan sudut elevasi 60°. Jika tinggi Joko 150 cm, maka tinggi gedung tersebut adalah …

Jawab

tan 60⁰ =



x = 12√3

Jadi tinggi gedung adalah

= x + tinggi Joko

= 12√3 m + 150 cm

= 12√3 m + 1,5 m

= (12√3 + 1,5) m


Daftar Pustaka
https://brainly.co.id/tugas/222788
https://mafia.mafiaol.com/2014/04/cara-mencari-perbandingan-sisi-segitiga-siku-siku-sudut-khusus.html

Komentar